Poster #P1765

Justin Towne +1-520-241-3778 jtowne@axdx.com

Identification of difficult to detect MRSA/MSSA strains by two commercial AST methods

INTRODUCTION

Antimicrobial susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA) uses oxacillin and/or cefoxitin as the appropriate test since methicillin is no longer manufactured. S. aureus is a very common pathogen that is responsible for infections ranging from skin infections to life-threatening respiratory infections and sepsis. The *mecA* and *mecC* genes cause resistance to beta-lactams in MRSA and have become problematic for individual patient treatment and resistance surveillance.

The Accelerate PhenoTest[™] BC kit (AXDX) provides antimicrobial susceptibility results in approximately 7 hours directly from positive blood cultures, which is 1-2 days faster than isolate-based methods such as the VITEK[®] 2 system. This study compared agreement of AXDX and VITEK[®] 2 system against reference broth microdilution (BMD).

METHODS

60 isolates of difficult to detect MRSA, including 51 that were positive for *mecA* with borderline oxacillin resistance (n=23) or mecC (n=30) (MRSA) and 9 that were negative for *mecA* or *mecC* with borderline susceptibility to oxacillin (MSSA) were evaluated. All isolates were obtained from Denmark (mecC) or the CDC AR Bank and had oxacillin and/or cefoxitin MICs near the clinical breakpoint.

Isolates were seeded into BD BACTEC[™] Aerobic Plus bottles containing 10 mL of human blood at a concentration of 30-50 CFU/mL, and were incubated on the BD BACTEC[™] FX blood culture system until they flagged positive. Seeded positive blood cultures were assessed with the Accelerate PhenoTest[™] BC kit on the Accelerate Pheno[™] system which evaluates two concentrations of cefoxitin to enhance MRSA detection. MICs were also determined by testing colonies obtained from subculture by reference BMD in cation-adjusted Mueller Hinton broth (Difco™, BD, Sparks MD) according to CLSI M07-A4 standard and the VITEK[®] 2 system (bioMérieux, Marcy L'Etoile, FR).

Antimicrobial susceptibility testing of the Accelerate PhenoTest[™] BC kit using the Accelerate Pheno[™] system utilizes morphokinetic cellular analysis (MCA), which optically records bacteria growing in the presence of an antibiotic. Bacterial cell response profiles are generated from time-lapse images and compared to algorithm models to report out MIC values. The AXDX software utilized v1.4.1 image analysis.

Table 1: mecA isolate results by method.

Isolate mecA-1 mecA-2 mecA-3 mecA-5 mecA-6 mecA-7 mecA-8 mecA-9 mecA-10 mecA-11 mecA-12 mecA-13 mecA-14 mecA-15 mecA-16 mecA-17 mecA-18 mecA-19 mecA-20 mecA-21 mecA-22 mecA-23 TOTAL

solate MSSA-1 MSSA-2 MSSA-3 MSSA-4 MSSA-5 MSSA-6 MSSA-7 MSSA-8 MSSA-9 mecA-4* TOTAL

J. Towne, R. Humphries Accelerate Diagnostics, Inc., Tucson, AZ

RESULTS

AXDX	VITEK® 2 system	BMD
R	R	R
S	S	R
R	R	R
R	R	R
R	S	R
R	R	R
R	R	R
R	R	R
R	R	R
R	R	R
R	R	R
R	R	R
S	S	R
R	S	R
R	R	R
R	R	R
R	R	R
R	R	R
R	R	R
R	R	R
N/A	S	R
R	R	R
19/21	17/22	22/22

Table 3: MSSA isolate results by method.

AXDX	VITEK® 2 system	BMD
S	S	S
S	S	S
S	S	S
S	S	S
N/A	S	S
S	S	S
N/A	S	S
N/A	S	S
N/A	S	S
S	S	S
6/6	10/10	10/10

*One isolate with mecA classified as MSSA by BMD comparator.

Table 2: mecC isolate results by method.

Isolate	AXDX	VITEK® 2 system	BMD
mecC-1	R	R	R
mecC-2	R	R	R
mecC-3	R	R	R
mecC-4	R	R	R
mecC-5	R	R	R
mecC-6	R	R	R
mecC-7	R	R	R
mecC-8	R	R	R
mecC-9	R	R	R
mecC-10	R	R	R
mecC-11	R	R	R
mecC-12	R	R	R
mecC-13	R	R	R
mecC-14	R	R	R
mecC-15	R	R	R
mecC-16	N/A	R	R
mecC-17	R	R	R
mecC-18	R	R	R
mecC-19	R	R	R
mecC-20	R	R	R
mecC-21	R	R	R
mecC-22	R	R	R
mecC-23	R	R	R
mecC-24	R	R	R
mecC-25	R	R	R
mecC-26	R	R	R
mecC-27	R	R	R
mecC-28	R	R	R
TOTAL	27/27	28/28	28/28

AXDX yielded identification results for 60/60 S. aureus isolates and AST results for 54/60 (90.0%). Six isolates did not yield AST results, due to poor confidence in the MRSA call by the system: 2 MRSA and 4 MSSA. For the isolates that yielded AST, AXDX had 95.8% (46/48) sensitivity and 100% (6/6) specificity for MRSA compared to BMD. Sensitivity for the mecC isolates was 100% (27/27), while sensitivity for the remaining MRSA isolates was 90.5% (19/21).

The VITEK[®] 2 system yielded AST results for all 60 isolates, and had 90% (45/50) sensitivity and 100% (10/10) specificity for MRSA compared to BMD. Sensitivity for the mecC isolates was 100% (28/28), while sensitivity for the remaining MRSA isolates was 77.3% (17/22). One isolate with *mecA* was consistently cefoxitin and oxacillin susceptible by all methods.

Resistance Profile		AXDX	VITEK [®] 2 syster
MRSA	mecA	90.5% (19/21)	77.3% (17/22)
	mecC	100% (27/27)	100% (28/28)
	Total	95.8% (46/48)	90% (45/50)
MSSA*	Total	100% (6/6)	100% (10/10)
	Total classified as MSSA by BMD con	100% (6/6)	, i

This study demonstrated >90% and 77.3% detection of MRSA due to mecA by AXDX and the VITEK[®] 2 system, respectively, for a collection of difficult to detect MRSA/MSSA strains. MRSA detection due to *mecC* was 100% by both strains.

With gram-positive bacteria gaining increased resistance, minimizing the use of vancomycin has become necessary. Confidence in accurate methicillin- and oxacillin-resistance testing will allow for more effective therapies and use of narrow-spectrum antibiotics.

The authors would like to thank Lauren Truman, Irma Perez, Alison Curtis, Garrett McCarter, Kamini Joshi and Monyka Salazar for assistance with broth microdilutions.

RESULTS

CONCLUSIONS

ACKNOWLEDGEMENTS