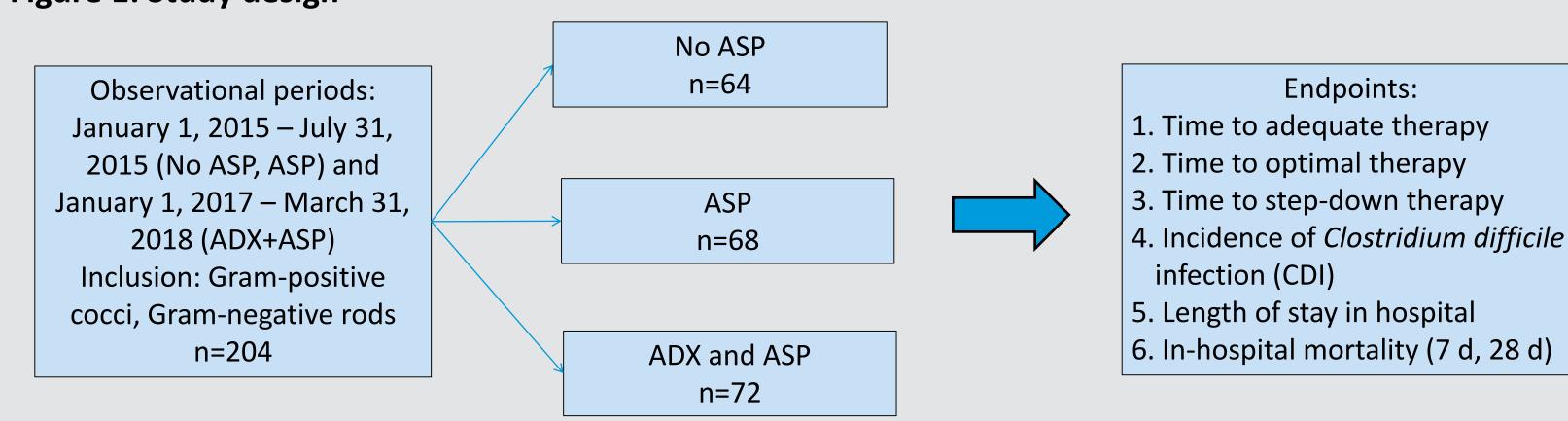


University Hospital of Cologne | Institute for Medical Microbiology, Immunology and Hygiene

Assessment of the clinical impact of rapid identification with same-day phenotypic antimicrobial susceptibility testing (Accelerate Pheno<sup>TM</sup> system) on the management of bloodstream infections in adult patients with antibiotic stewardship intervention: A retrospective observational study. Kathrin Ehren<sup>1</sup>, Arne Meißner<sup>2</sup>, Nathalie Jazmati<sup>1</sup>, Julia Ertel<sup>1</sup>, Norma Jung<sup>3</sup>, Janne Vehreschild<sup>3</sup>, Martin Hellmich<sup>4</sup>, Harald Seifert<sup>1</sup>

<sup>1</sup>Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Germany, <sup>3</sup>Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany, <sup>4</sup>Institute of Medical Statistics and Computational Biology, University Hospital of Cologne, Cologne, Germany


## Background

- Rapid initiation of appropriate antimicrobial therapy is crucial in managing severe infections [1]
- Timely availability of microbiological results is essential to enable early targeted antimicrobial therapy
- Effective antimicrobial stewardship program (ASP) improves patient outcomes in bloodstream infections [2]
- Accelerate Pheno™ system (Accelerate Diagnostics, Tucson, Arizona, USA) (ADX) is a novel technology for rapid identification (<1.5hrs) and phenotypic antimicrobial susceptibility testing (~7hrs) [3] directly from positive blood cultures
- The impact of ADX on the clinical management and patient outcome still is unclear

### Methods

- Retrospective before and after observational study at the University Hospital of Cologne (1464 beds), observational periods January 1, 2015 – July 31, 2015 and January 1, 2017 – March 31, 2018
- Three groups were compared:
  - (1) Conventional microbiological diagnostics without ASP ("no ASP"), conventional diagnostics including MALDI-TOF MS (Biotyper, Bruker Daltonics, Bremen, Germany), Vitek 2, and Etest (bioMérieux, Nürtingen, Germany)
  - (2) Conventional microbiological diagnostics with ASP intervention (including chart review, physical examination and recommendation for therapy after Gram stain result )("ASP")
  - (3) ADX (in addition to conventional standard) with ASP ("ADX and ASP")

Figure 1: Study design



Abbreviations: ASP, Antimicrobial stewardship program; ADX, AcceleratePheno™ System.

### Results

- 204 patients met inclusion criteria (No ASP n=64; ASP=68; ADX and ASP=72), no difference in clinical and demographic characteristics
- ADX decreased time from positive blood culture to microorganism identification (ID) (median: No ASP 24.2 hours; ASP 25.2 hours; ADX and ASP 12.5 hours; p<0.001) and time to susceptibility testing (AST) (median: No ASP 44.1 hours; ASP 43.8 hours; ADX and ASP 17.6 hours; p<0.001)
- ASP intervention alone improved the proportion of patients on optimal therapy within 48 hours after Gram stain (62.5% vs. 80.9%; p<0.05; p-value not shown in Table 2)
- ADX improved time from Gram stain to optimal antimicrobial therapy (median: ASP 11 hours; ADX and ASP 7 hours; p=0.044) and time to-step down therapy (median: ASP 27.8 hours; ADX and ASP 12 hours; p=0.018), no effect on time to adequate therapy could be shown

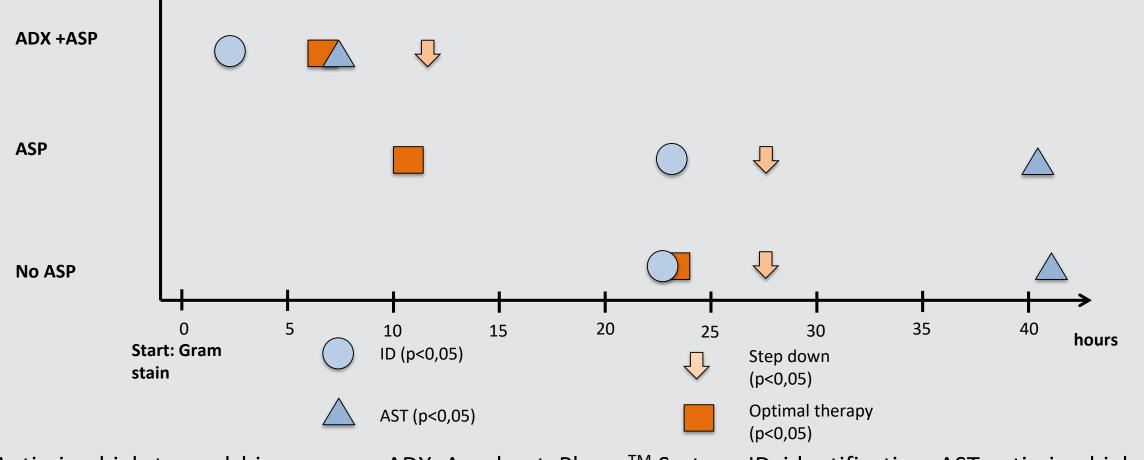
**Table 1: Microbiological and clinical findings** 

|                     | Brear arra cirrical irraing     | Total        | No ASP     | ASP        | ADX and ASP |
|---------------------|---------------------------------|--------------|------------|------------|-------------|
| Species             | Escherichia coli                | 50 (24.5%)   | 14 (21.9%) | 18 (26.5%) | 18 (25%)    |
|                     | Klebsiella spp.                 | 21 (10.3%)   | 8 (12.5%)  | 5 (7.4%)   | 8 (11.1%)   |
|                     | Enterobacter cloacae            | 11 (5.4%)    | 5 (7.8%)   | 1 (1.5%)   | 5 (6.9%)    |
|                     | Other <i>Enterobacteriaceae</i> | 15 (7,5%)    | 4 (6.4%)   | 5 (7.4%)   | 6 (8.4%)    |
|                     | Pseudomonas aeruginosa          | 12 (5.9%)    | 3 (4.7%)   | 5 (7.4%)   | 4 (5.6%)    |
|                     | Staphylococcus aureus           | 51 (25%)     | 16 (25%)   | 22 (32%)   | 13 (18.1%)  |
|                     | Enterococcus faecium            | 25 (12.3%)   | 7 (10.9%)  | 5 (7.4%)   | 13 (18.1%)  |
|                     | Enterococcus faecalis           | 15 (7.4%)    | 6 (9.4%)   | 5 (7.4%)   | 4 (5.6%)    |
|                     | Others                          | 4 (2%)       | 1 (1.6%)   | 2 (3%)     | 1 (1.4%)    |
| Source of Infection | Urinary tract                   | 62 (30.4%)   | 17 (26.6%) | 22 (32.4%) | 23 (31.9%)  |
|                     | Intra-abdominal                 | 39,0 (19.1%) | 10 (15.6%) | 14 (20.6%) | 15 (20.8%)  |
|                     | Intravascular catheter          | 29 (14.2%)   | 12 (18.8%) | 8 (11.8%)  | 9 (12.5%)   |
|                     | Skin/skin structure             | 21 (10.3%)   | 5 (7.8%)   | 8 (11.8%)  | 8 (11.1%)   |
|                     | Respiratory tract               | 13 (6.4%)    | 7 (10.9%)  | 4 (5.9%)   | 2 (2.8%)    |
|                     | Endocarditis                    | 4 (2%)       | 4 (6.3%)   | 0 (0%)     | 0 (0%)      |
|                     | Central nervous system          | 1 (0.5%)     | 0 (0%)     | 0 (0%)     | 1 (1.4%)    |
|                     | Unknown                         | 23 (11.3%)   | 7 (10.9%)  | 5 (7.4%)   | 11 (15.3%)  |
| Acquisition         | Hospital                        | 152 (74.5%)  | 49 (76.6%) | 51 (75%)   | 52 (72.2%)  |

Abbreviations: ASP, Antimicrobial stewardship program, ADX, AcceleratePheno<sup>TM</sup> System.

Table 2: Timing of antimicrobial therapy and outcome

| raises at thining of attention states and appropriate carecards |               |                |                |               |                      |  |  |  |  |
|-----------------------------------------------------------------|---------------|----------------|----------------|---------------|----------------------|--|--|--|--|
|                                                                 | Total         | No ASP         | ASP            | ADX and ASP   | p-value <sup>c</sup> |  |  |  |  |
| Time to adequate therapy (h) a, median (IQR)                    | 0 (0-3.4)     | 0 (0-4)        | 0 (0-4)        | 0 (0-3.3)     | .446                 |  |  |  |  |
| Valid N                                                         | 200           | 62             | 67             | 71            | •                    |  |  |  |  |
| Time to optimal therapy (h) a, median (IQR)                     | 9.25 (0-27.5) | 23 (0.8-31.6)  | 11 (0-31)      | 7 (0-13.3)    | .044                 |  |  |  |  |
| Valid N                                                         | 163           | 44             | 57             | 62            | •                    |  |  |  |  |
| Time to step down (h) a, median (IQR)                           | 25 (8.5-33.3) | 27.5 (23.5-34) | 27.8 (11-44.5) | 12 (7.5-25.5) | .018                 |  |  |  |  |
| Valid N                                                         | 87            | 19             | 38             | 30            |                      |  |  |  |  |
| Optimal therapy within 48 hours a                               | 156 (76.5%)   | 40 (62.5%)     | 55 (80.9%)     | 61 (84.7%)    | .547                 |  |  |  |  |
| CDI                                                             | 11 (5.4%)     | 3 (4.7%)       | 2 (2.9%)       | 6 (8.3%)      | .170                 |  |  |  |  |
| Length of stay <sup>b</sup> (d), median (IQR)                   | 26 (15-43.5)  | 27.5 (15-42.5) | 25 (6-40.5)    | 26 (14-46.5)  | .758                 |  |  |  |  |
| In-hospital mortality d7                                        | 4 (2%)        | 1 (1.6%)       | 1 (1.5%)       | 2 (2.8%)      | .593                 |  |  |  |  |
| In-hospital mortality d28                                       | 33 (16.2%)    | 10 (15.6%)     | 9 (13.2%)      | 14 (19.4%)    | .322                 |  |  |  |  |


Abbreviations: ASP, Antimicrobial stewardship program, ADX, AcceleratePheno™ System, CDI, Clostridium difficile infection.

<sup>a</sup>: from Gram stain, <sup>b</sup>: after blood culture draw, <sup>c</sup>:p-values from Pearsons chi square test and Kruskal Wallis test for comparison of ASP/ASP+ADX.

#### Conclusion

- ADX significantly reduced time to ID and AST by more than 11 and 26 hours, respectively
- In combination with ASP intervention ADX significantly reduced time to optimal therapy by 4 hours (ASP) and 16 hours (No ASP), time to step-down was reduced by 15.8 hours (ASP) and 15.5 hours (No ASP)
- ASP intervention alone improved the proportion of patients on optimal therapy within 48 hours from 62.5% to 80.9%
- Additional ADX in an advanced technology setting had no impact on the time to institution of adequate antimicrobial therapy
- Earlier optimal therapy and especially earlier step-down helps to reduce broad spectrum antimicrobial therapy in the context of emerging antimicrobial resistance

Figure 2: Timeline conventional vs. rapid diagnostics (median)



Abbreviations: ASP, Antimicrobial stewardship program, ADX, AcceleratePheno<sup>TM</sup> System, ID, identification, AST antimicrobial susceptibility testing.

# References

- 1. Kumar, A., et al., Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med, 2006. 34(6): p. 1589-96.
- 2. Barlam, T.F., et al., Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis, 2016. 62(10): p. e51-77.
- 3. Pancholi, P., et al., Multicenter Evaluation of the Accelerate PhenoTest BC Kit for Rapid Identification and Phenotypic Antimicrobial Susceptibility Testing Using Morphokinetic Cellular Analysis. J Clin Microbiol, 2018. 56(4).

Kathrin Ehren, MD Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Goldenfelsstr. 19-21, 50937 Cologne, Germany +49 (0) 221 478-32009 Harald.Seifert@uni-koeln.de