

A Pilot Study of Accelerate PhenoTest[™] BC kit (AXDX) Compared to Standard Microbiological Testing on Blood Cultures Positive for Gram-negative Bacilli

William Stokes¹, MD, Lorraine Campbell², Johann Pitout^{2,3}, MD, John Conly^{1,3,4}, MD, Deirdre Church¹⁻³, MD, Dan Gregson¹⁻³, MD

1) Department of Medicine, University of Calgary, Calgary, AB, Canada, (2) Calgary, AB, Canada, (3) Department of Pathology and Laboratory Medicine, University of Calgary,, and (4) Department of Microbiology, Immunology and Infectious Diseases, University of Calgary

INTRODUCTION

- Time to microbial identification (ID) and antimicrobial susceptibility testing (AST) results is a critical factor for patients with Gram-negative bloodstream infections.
- In our center, positive blood cultures containing Gram-negative bacilli (GNB) are directly tested with MALDI (DM) and the VITEK[®] 2 system (DV2) using a blood culture pellet.
- The Accelerate PhenoTest[™] BC kit used with the Accelerate Pheno[™] system (AXDX), an FDAcleared product, is a rapid ID/AST platform which has reduced the time from positivity to microbial ID and AST results to less than 7 hours.

OBJECTIVES

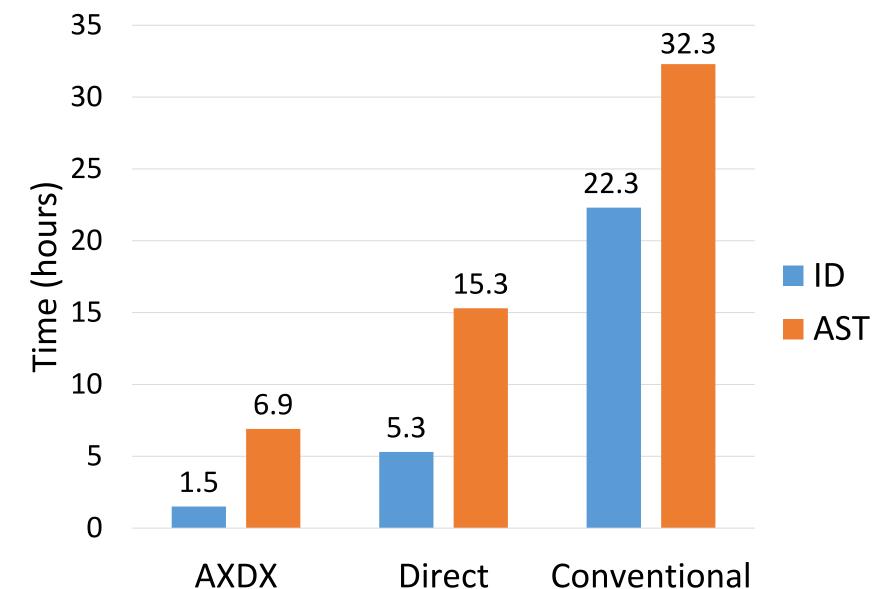
- ID/AST agreement comparison of DM/DV2 to AXDX using clinical blood cultures containing GNB and blood culture samples seeded with multi-drug resistant GNB (MDR GNB).
- ID/AST time to result (TTR) comparison between AXDX, direct and conventional methods
- Proportion of clinical samples with changes to antibiotic (Abx) therapy.

METHODS

Samples

Clinical blood cultures positive for GNB on Gram stain were collected over a three month period at our center (N=29) and sterile blood culture samples were seeded with MDR GNB (N=35, 1 GES, 4 IMP, 6 KPC, 5 NDM, 9 OXA, 4 VIM, 1 OXA/NDM, 5 non-carbapenamase). Patient characteristics, changes in antibiotics and outcomes were obtained via electronic chart review.

Testing/Comparators


Samples were tested using AXDX (software version 1.3.1.22), DM/DV2, and compared* to conventional methods (plate incubation followed by MALDI and VITEK[®] 2 system).

Discrepancies

Very major errors (VME) and major errors (ME) were confirmed with microbroth dilution.

*MICs were truncated to overlapping reportable range prior to analysis.

Figure 1: Median time to ID and AST results for clinical samples (N=29) by system run time (AXDX) or from time of blood culture positivity (Direct/Conventional).

Table 1: Clinical samples - baseline characteristics and changes to antibiotics made after AST results (N=28).

Mean age
Male gender

Diagnosis

Nosocomial bac Death within 3

Organism identif

Empiric antibiot

Organism resista Abx narrowed a

Table 2: ID Agreement Summary

Sample Type	Method	Agreement	Non-report (NR)
Clinical	AXDX	28 (100%)	1 (3.4%)
(N=29)	DM	20 (100%)	9 (32.1%)
Seeded	AXDX	31 (93.9%)	2 (5.7%)
(N=35)	DM	19 (90.5%)	14 (40%)

	68.3
	57.1%
	Urosepsis (50%)
	Fever NYD (21%)
	Liver/biliary sepsis
	(11%)
	Other (18%)
cteremia	11%
months	11%
	<i>E. coli</i> (60.7%)
	K. pneumoniae (14.3%)
	<i>K. oxytoca</i> (7.1%)
ified	P. mirabilis (7.1%)
	P. aeruginosa (3.6%)
	<i>E. cloacae</i> (3.6%)
	<i>C. freundii</i> (3.6%)
	Ceftriaxone (62%)
tics used	Pip/Tazo (31%)
	Ertapenem (4%)
	Meropenem (4%)
ant to empiric Abx	15%
after AST results	56%

Table 3: AST Agreement Summary – Clinical Samples (N=28).

Method	EA	CA	VME	ME	mE	NR	Total S	Total I/R
AXDX*	292 97.0%	290 96.3%	0	0	11 3.7%	0	275	26
DV2	304 99.3%	303 99.0%	0	0	2 0.7%	2 0.6%	282	24

*AXDX only reports cefazolin for *E. coli* and *Klebsiella* spp.

Table 4: AST Agreement Summary – Seeded Samples (N=29)

AXDX									
Antibiotic	EA	СА	VME	ME	mE	NR	Total S	Total I/R	
Amikacin	25	25	2	0	2	0	24	5	
Cefazolin*	20	20	0	0	0	1	0	20	
Cefepime	24	22	1	0	6	0	7	22	
Ceftazidime	28	26	0	0	3	0	2	27	
Ceftriaxone	27	26	0	0	2	1	3	25	
Ciprofloxacin	29	27	0	0	2	0	3	26	
Ertapenem	24	23	2	0	2	2	5	22	
Gentamicin	27	26	0	0	3	0	15	14	
Meropenem	13	14	0	0	0	15	1	13	
Pip/Tazo	27	25	0	0	4	0	4	25	
Tobramycin	28	26	0	0	3	0	7	22	
TOTAL (%)	272 93.2%	260 89.0%		0	27 9.2%	20 6.4%	71	221	

Direct VITEK 2 system									
Antibiotic	EA	СА	VME	ME	mE	NR	Total S	Total I/R	
Amikacin	28	27	1	0	1	0	22	7	
Cefazolin	29	29	0	0	0	0	0	29	
Cefepime	28	27	0	0	2	0	12	17	
Ceftazidime	29	29	0	0	0	0	3	26	
Ceftriaxone	28	28	0	0	1	0	2	27	
Ciprofloxacin	29	29	0	0	0	0	3	26	
Ertapenem	28	28	1	0	0	0	3	26	
Gentamicin	29	27	0	0	3	0	15	14	
Meropenem	25	23	1	0	4	1	6	22	
Pip/Tazo	28	27	0	0	2	0	3	26	
Tobramycin	29	28	0	0	1	0	7	22	
TOTAL (%)	310 97.5%	302 94.7%	3 1.3%	0	14 4.4%	1 0.3%	76	242	

*AXDX only reports cefazolin for *E. coli* and *Klebsiella* spp

Abbreviations: CA=categorical agreement; EA=essential agreement; I=intermediate; mE=minor error; ME=major error; NR=non-report; Pip/Tazo=piperacillin-tazobactam; R=resistant; S=susceptible; VME=very major error.

MICs were truncated to overlapping reportable range prior to analysis.

$D_{inc} \rightarrow V/ITEV^{\mathbb{R}}$) and a

Timing & Antibiotic Optimization

- narrowed for 56% based on ID/AST results (Table 1)

ID Agreement

AST Agreement

- there were no VME or ME and mE was <4%
- which will be addressed in a future software release

Limitations

- standard method
- Small sample size

CONCLUSIONS

- AXDX was more than 50% faster than DM/DV2
- DM and DV2 was more than 4x and 2x faster than
- antibiotics
- samples
- multi-drug resistant organisms

- impact of DM compared to conventional MALDI

William.Stokes@ahs.ca

Accelerate Pheno[™] system and Accelerate PhenoTest[™] BC kits were provided by Accelerate Diagnostics, Inc. The Accelerate Pheno[™] system and Accelerate PhenoTest[™] BC kit are not authorized for sale in Canada. They are for research use only, not for clinical diagnostic use in Canada.

Contact: William.Stokes@ahs.ca

RESULTS

Time to result (TTR) in Figure 1 reflect system run times for AXDX and clinical TTR for direct/conventional methods Antibiotic therapy was broadened for 15% of patients and

AXDX and DM overall agreement were both >90% (Table 2) DM had a high ID non-report rate for clinical and seeded

Clinical overall EA/CA were >96% for both AXDX and DV2; Seeded EA/CA were lower for AXDX compared to DV2 AXDX had a high meropenem non-report rate for seeded,

The comparator, conventional VITEK[®] 2, is not a gold-

conventional MALDI and VITEK[®] 2 system, respectively AST results from 15% of clinical samples would have had critical impact by identifying organisms resistant to empiric

DM/DV2 and AXDX both had high agreement with clinical

DV2 had higher agreement than AXDX when challenged with

FUTURE DIRECTION

Before and after study comparing the clinical and financial

Before and after study comparing the clinical and financial impact of DV2 compared to DM and conventional VITEK

Explore value & impact of higher ID report rates with AXDX

CONTACT INFORMATION